Overview
Overview
Knockoff Pipeline Overview
This pipeline provides multiple statistical methods for variable selection and genetic analysis using knockoff statistics:
flowchart TD
A[Input Data] --> B{Data Type}
B -->|Individual-level Genotype Data| C[Individual Statistics Pipeline]
B -->|GWAS Summary Statistics| D[Summary Statistics Pipeline]
C --> E{Sample Type}
E -->|IID Samples| F[GLM-based Methods]
E -->|Related Samples| G[GLMM-based Methods]
F --> H{Analysis Level}
H -->|SNP-based| I[KnockoffScreen - SNP-based]
H -->|Window-based| J[KnockoffScreen - Window-based]
H -->|Gene-based| K[GeneScan3DKnock]
G --> L[Calculate GRM Matrix]
L --> M[Fit GLMM model]
M --> N[BIGKnock - Gene-based]
D --> O{Analysis Mode}
O -->|Variable Selection| P[GhostKnockoff]
O -->|Local Genetic Correlation| Q[LAVA-Knock]
I --> R[SNP-level Variable Selection]
J --> S[Window-level Variable Selection]
K --> T[Gene-level Variable Selection]
N --> U[Gene-level Variable Selection]
P --> V[Knockoff Z-scores Construction]
V --> W[FDR-controlled Variable Selection]
Q --> X[Bivariate Local Correlation]
X --> Y[Multi-trait Analysis]
Y --> Z[Pleiotropy Investigation]
style A fill:#e1f5fe
style R fill:#c8e6c9
style S fill:#c8e6c9
style T fill:#c8e6c9
style U fill:#c8e6c9
style W fill:#ffecb3
style Z fill:#f8bbd9
classDef method fill:#fff3e0,stroke:#ff9800,stroke-width:2px
classDef result fill:#e8f5e8,stroke:#4caf50,stroke-width:2px
class I,J,K,L,P,Q method
class R,S,T,U,W,Z result
Key Methods
Individual-level Data Methods
- KnockoffScreen: Supports both SNP-based and window-based analysis using GLM for IID samples
- GeneScan3DKnock: Gene-based analysis using GLM for IID samples
- BIGKnock: Gene-based analysis using GLMM for related samples, requires GRM matrix calculation
Summary Statistics Methods
- GhostKnockoff: Constructs knockoff Z-scores from GWAS summary statistics for variable selection
- LAVA-Knock: Extends GhostKnockoff for local genetic correlation analysis and pleiotropy investigation